5 min read

Innleiðing snjallra gagnalausna: 4 öngstræti og 4 leiðir út úr þeim

Innleiðing snjallra gagnalausna: 4 öngstræti og 4 leiðir út úr þeim

Það er að mörgu að huga þegar innleidd er framandi tækni sem hefur bein áhrif á störf fólks, ferla og skipulag. Tilgangurinn kann að vera óljós, markmiðin óskýr og ávinningurinn illmælanlegur.

Því þarf ekki að koma á óvart að innleiðing snjallra lausna gengur ekki alltaf áfallalaust fyrir sig, jafnvel ógjarnan svo.

Hér verður fjallað um helstu öngstræti sem snjallverkefni geta ratað í og hvernig megi finna leiðina út úr þeim – og jafnvel fram hjá þeim

Meginpunktar í greininni:

  • Mikilvægt er að velja fyrstu snjallverkefnin út frá vandaðri stefnumótun og tengingu við kjarnastarfsemi og heildarstefnu fyrirtækisins
  • Andstaða starfsmanna og skilningsleysi æðstu stjórnenda er algeng hindrun í vegi gagnalausna, sem best er leyst með fræðslu og þjálfun
  • Óskipulag á gögnum og gagnafjöll geta virkað lamandi á fyrstu stigum – það þarf að stíga ákveðið fram og af hugrekki, koma skikk á gögnin með ráðgjöf og markvissri vinnu
  • Skortur á hæfu fólki getur verið þrándur í götu metnaðarfullra verkefna, en leiðin áfram felst meðal annars í þjálfun fólks sem fyrir er og „almannavæðingar gagnavísinda“.

Er fyrirtæki þitt tilbúið fyrir gervigreindarbyltinguna? Hjá DataLab starfa sérfræðingar á sviði hagnýtingar gagna í snjöllum lausnum sem m.a. aðstoða við stefnumótun, fræðslu og leiðsögn vegna hagnýtingar slíkra lausna. Hafðu samband og fáðu stutta kynningu á möguleikum gagnadrifinna og snjallra lausna þér að kostnaðarlausu.

Maður neðansjávar

Photo by Tiero on Canva Pro

 

1# VITLAUST VERKEFNI VALIÐ

Ef fyrstu verkefnin eru ekki hönnuð til að styrkja innri ferla eða bæta þjónustu við viðskiptavini verður ef til vill lítið þol fyrir dýrum gæluverkefnum ef þau skila ekki sannfærandi árangri. Fyrsta verkefnið mun nefnilega ekki endilega gera stormandi lukku eða hafa mikla umbyltingu í för með sér.

Mesti ávinningurinn liggur einmitt í lærdómsferlinu. Það þarf heilmikið að læra; lærdómurinn kemur í áföngum en styrkist með veldisvexti eftir því sem áfram er haldið. Því fyrr sem vegferðin hefst, því fyrr má greina þann ávinning sem gagnalausnir geta fært.

LEIÐIN ÚT:

Oft er frumkvæði að snjallvæðingu sprottið úr grasrótinni; hugmyndirnar koma frá áhugasömum einstaklingum, tæknilega þenkjandi fólki sem skilur verðmætin sem felast í gögnunum. En ef vaðið er af stað án skýrrar stefnu og stuðnings æðstu stjórnenda er hætt við að kraftinn vanti til að verkefnin nái flugi.

Mikilvægt er því að byggja fyrstu verkefnin á traustri stefnumótun. Snjallvæðing sem styður við kjarnastarfsemina og fellur saman við heildarstefnu fyrirtækisins er líklegri til að njóta stuðnings, jafnvel þótt fyrsta verkefnið heppnist ekki 100 prósent. 

2# ANDSTAÐA Í MENNINGU OG LÍTILL SKILNINGUR Á ÁVINNINGI​ TÆKNINNAR

Fyrstu verkefni snjallra lausna munu lúta að því að tækla reglubundin verkefni sem tiltölulega einfalt er að þjálfa vélar til að gera betur og hraðar en menn geta gert. Hér er um að ræða alls kyns flokkun og greining á samningum og þjónustufyrirspurnum, sjálfvirkar uppfærslur talnagagna í excelskjölum og fleira í þeim dúr. 

Snjallar gagnalausnir munu því leysa mannshöndina af hólmi í mörgum verkefnum, sem mun ugglaust vekja ótta og andúð víða á vinnustöðum. 

Vegna þess að ávinningur af innleiðingu gagnalausna er oft illmælanlegur eða mælanleg markmið eru hreinlega ekki skilgreind í upphafi, kann að vera lítill skilningur meðal starfsmanna á tilgangi og markmiðum með vegferðinni. Valdajafnvægi riðlast, alls kyns skipulag og ferli breytast.

„Eru vélarnar að taka allt yfir? Eru það nördarnir í gagnadeildinni sem stjórna ferðinni núna?“

En mótspyrnan getur líka komið að ofan; frá æðstu stjórnendum eða stjórnarmönnum, sem hafa takmarkaðan skilning á möguleikum tækninnar – og eftir höfðinu dansa oft limirnir

Þegar stemningin er svona er hætta á verkefnin fæðist andvana eða, í versta falli, að þau mæti fjandskap og tortryggni. Það er ekki snjöll niðurstaða.

LEIÐIN ÚT:

Það hefur sýnt sig að árangursrík innleiðing snjallra gagnalausna getur vissulega létt undir með vinnslu einfaldra, endurtekinna ferla. En oft er niðurstaðan einnig að svigrúm skapast til að sinna annars konar virðisaukandi verkefnum sem byggja á niðurstöðum lausnanna.

Þeir sem áður sinntu nauðsynlegum rútínuverkefnum, finna sig þá jafnvel frekar í hlutverki ráðgjafa. Geislafræðingur sem þarf ekki lengur að liggja yfir röntgenmyndum til að greina mein getur nýtt tíma sinn betur í ráðfæringar við aðra sérfræðinga um meðferðir eða í ráðgjöf til sjúklinga, svo dæmi sé tekið.

Í öllu falli er mikilvægt, þar sem það á við, að fræða starfsfólk um hvernig tæknin getur gert starfsumhverfi þess skemmtilegra og innihaldsríkara, en stuðla að öflugri starfsþróun þeirra sem tæknin hefur mest áhrif á.

Gagnvart stjórn eða æðstu stjórnendum nauðsynlegt að sýna fram á og fræða um væntan fjárhagslegan ávinning snjallra lausna og hvert stefnir í tækninni á næstu árum.

Photo by Andrea Piacquadio from Pexels

3# ALLT OF MIKIÐ AF GÖGNUM OG GAGNAÓREIÐA

Vandinn er oft sá að gögn sitja í sílóum hér og hvar, jafnvel á pappírsformi í möppum, og eru illa aðgengileg. Þegar aðgengið hefur verið bætt tekur við flokkun gagnanna sem getur verið mikil og snúin vinna. 

Annar vandi sem blasir við er einfaldlega magn gagnanna sem fyrirtæki hafa safnað upp á áratugum – hvar á eiginlega að byrja? Hvernig er best að geyma gögn á öruggan hátt og í samræmi við lög um persónuvernd?

Snjallar lausnir sem byggja á gervigreind vinna best þegar gögn eiga greiða leið frá öflun þeirra til greiningar, úrvinnslu og lokum endurgjafar. Ef þessi gagnarás er stífluð, til dæmis vegna óheppilegra gagnasílóa, vinnur það gegn virkni reikniritanna.

Ef gögnin eru léleg kemur ekkert gagnlegt úr reikniritunum. Gögnin eru fóður þeirra og án mikils magns vel flokkaðra gæðagagna fer vélin ekki af stað – að minnsta kosti verður afraksturinn ekki mikils virði.

LEIÐIN ÚT:

Galdurinn hér er að láta ekki yfirþyrmandi gagnafjöllin lemja úr sér alla framkvæmdagleði. Það má ekki gleyma að engin snjallræði verða til án allra þessarra gagna – það eru verðmæti þarna í gagnastaflanum.

Högun (e. architecture) gagnasafna, svo sem vistun gagna og traustar gagnarásir frá upptökum (til dæmis skynjurum) til vinnslu, þarf að vera í lagi, sem og tengingar gagnasafnanna við rétt tól til að vinna úr þeim.

Best er að geyma gögnin á einum, öruggum stað, til dæmis í skýjaþjónustu, í stað þess að hafa þau dreifð á mörgum netþjónum, hvað þá í eiginlegum skjalaskápum. Magnið er ekki vandi í sjálfu sér – því meiri gögn, þeim mun meira fóður fyrir reikniritin. 

Skýjaþjónustur bjóða einnig þann ávinning að einfalt er að skala geymslu- og vinnslugetu eftir þörfum. Azure þjónusta Microsoft og AWS frá Amazon bjóða þjónustuaðilum að tengjast sig inn á kerfi sín til að veita sérhæfða gagnavinnslu (AI as a Service) eftir óskum og þörfum.

Lego kubba maður á skrifstofu

Photo by www_slon_pics from Pixabay

4# SKORTUR Á FÆRNI OG ÞEKKINGU​

Það stefnir allt í mikinn skort á sérfræðingum í gagnavinnslu og gagnavísindum á næstu árum. Sum fyrirtæki og stofnanir eru hikandi við þróun gagnalausna af þessum sökum. 

Og sérsviðin eru mörg og verkefnin ólík, sem gerir leitina að rétta fólkinu ekki einfaldari. Þetta er óneitanlega áskorun fyrir gervigreindariðnaðinn í heild sinni, sem mikið kapp er lagt á að leysa.

En það skortir líka þekkingu á hagnýtingu snjallra lausna, þegar þær hafa verið smíðaðar. Gervigreindin breytir störfum, og kallar á nýja færni og tækniskilning til að lausnirnar skili sem mestum ávinningi. Þetta gap þarf að brúa, annað hvort með nýju fólki eða markvissri þjálfun þeirra sem fyrir eru.

LEIÐIN ÚT:

Gagnavísindi eru vissulega nauðsynleg til að greina hvernig nýta megi gögn til að ná fram rekstrarlegum ávinningi.  Flest fyrirtæki búa hins vegar þegar að hæfu fólki sem hægt er að þjálfa; annars vegar til að útbúa gögnin þannig að hægt sé að vinna úr þeim, hins vegar til að nýta niðurstöður reikniritanna. Fyrr verða þau ekki snjöll.

Innanbúðarfólk hefur gjarnan verðmæta sérþekkingu á sínum markaði og starfsumhverfi og er því hægara um vik að koma auga á tækifæri til snjallvæðingar gagna sem nýtist því í starfi – ef það fær rétta þjálfun og leiðsögn.

Greitt aðgengi að gögnum þvert yfir fyrirtækið er líka vel fallið til valdeflingar. Samanlagt stuðlar þetta að nokkurs konar almannavæðingu gagnavísinda sem verður ein af mikilvægum leiðum til að leysa fyrirsjáanlegan skort á gagnasérfræðingum. 

Skýjaþjónustur, eins og Azure og AWS, munu einnig ýta undir þessa þróun með alls kyns AIaaS lausnum. Utanaðkomandi ráðgjafarfyrirtæki geta svo veitt mikla hjálp auk þess sem útvistun stærri gagnaverkefna verður æ algengari.

Maður inní boxi

Photo by vchal from Getty Images

SAMANTEKT

Það er auðvelt að rata í ógöngur við innleiðingu snjallra lausna, en leiðirnar út úr þeim eru líka þekktar. Mikilvægt er að byggja á vandaðri stefnumótun og fræðslu til starfsmanna og yfirmanna.  Þjálfa þarf þá sem koma að innleiðingunni sem og hina einnig sem þurfa að aðlagast breyttu hlutverki og nýjum verkefnum

 

Hagnýting gervigreindar | Vegvísir DataLab

Hagnýting gervigreindar | Vegvísir DataLab

Framfarir á sviði Generative AI | Spunagreindar hafa skapað tækifæri til að fela tölvum fleiri verkefni en áður var mögulegt. Afraksturinn er m.a....

Read More
Gervigreind og snjallar lausnir í opinberri þjónustu – I. hluti: Hindranir og tækifæri

Gervigreind og snjallar lausnir í opinberri þjónustu – I. hluti: Hindranir og tækifæri

Notkun gervigreindar og snjallra lausna í opinbera geiranum eykst stöðugt um allan heim.

Read More
Valdi gervigreindina í Reykjavík fram yfir New York

Valdi gervigreindina í Reykjavík fram yfir New York

Axel Örn Jansson er nýjasti meðlimur Datalab teymisins, en hann kemur fullur af eldmóð og nýstárlegum hugmyndum úr meistaranámi sínu í...

Read More